Crossing the Mesoscale No-Man's Land via Parallel Kinetic Monte Carlo

S. Plimpton, C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wagner, E. Webb, X. Zhou, C. Garcia Cardona, A. Slepoy, Sandia report SAND2009-6226, October 2009.

The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.

Return to Publications page